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Quantum spiral bandwidth of entangled two-photon states
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We put forward the concept of quantum spiral bandwidth of the spatial mode function of the two-photon
entangled state generated in spontaneous parametric down-conversion. We obtain the bandwidth using the
eigenstates of the orbital angular momentum of the biphoton states, and reveal its dependence with the length
of the down-converting crystals and waist of the pump beam. The connection between the quantum spiral
bandwidth and the entropy of entanglement of the quantum state is discussed.
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Entanglement, one of the most genuine features of qu
tum mechanics, is a basic ingredient in quantum cryptog
phy, computing, and teleportation@1,2#. Spontaneous para
metric down-conversion, namely, the generation of t
lower-frequency photons when a strong pump field intera
with a nonlinear crystal, is a reliable source of entang
photons. The generated two-photon state is entangled in
larization @3#, and most applications of parametric dow
conversion in quantum systems make use of such spin
tanglement@4–6#. However, entanglement is also embedd
in the spatial mode functions that describe the two-pho
states. Such spatial entanglement occurs in an infin
dimensional Hilbert space and is gaining increasing atten
as a powerful way to encode and to exploit quantum inf
mation@7–12#. For example, knowledge of the spatial stru
ture acquired by the mode functions of entangled signal
idler photons forms the basis of multidimensional quant
imaging, and it can be used to increase the efficiency
multidimensional quantum communication protocols. T
spatial structure of the photon states can be expressed
mode decomposition of their mode function in an approp
ate basis. The amount of entanglement of a quantum sta
directly related to the width of such modal expansion, he
after referred to asquantum spatial bandwidth. A two-photon
state described by a single mode is a product state, wh
quantum state described by an equidistributed multimode
pansion corresponds to a maximally entangled state. Th
fore, a fundamental question that arises is how to act on
spatial quantum distribution of a given mode expansi
hence how the corresponding quantum information can
e.g., concentrated. Along these lines, the spatial manipul
tion of the pump beam have been shown to result in sign
cant alterations of the coincidence counting rate as a func
of the transverse spatial coordinates in quantum imag
@7,13,14#, which is a signature of the underlying modificatio
of the quantum spatial bandwidth.

It has been recently observed experimentally that the p
ton pairs generated in spontaneous down-conversion are
tangled in orbital angular momentum~OAM! @15#. Such
OAM entanglement allows the implementation of arbitra
d-dimensional quantum channels@16#, thus it has been use
to demonstrate violation of Bell inequalities with qutrits@17#.
The corresponding mode functions are naturally expresse
terms of eigenstates of the paraxial OAM operator, wh
spiral or winding topological structure can be resolved
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perimentally using combinations of holographic and filteri
techniques. Therefore, such base provides a powerful too
explore the concept of spatial multimode entanglement
this paper we put forward the full characterization of t
entangled photon pairs in terms of eigenstates of the O
operator and reveal how the correspondingquantum spiral
bandwidthdepends on the shape of the beam that pumps
down-converting crystal, and on the material properties a
length of the crystal. We obtain in analytical form importa
similarity rules that hold for arbitrary input and crystal co
ditions.

Let a quadratic nonlinear crystal of lengthL be illumi-
nated by a quasimonochromatic laser pump beam propa
ing in the z direction. The pump beam writesEp(x,z,t)
5*dqE0(q)exp@i(kp(q)z1iq•x2vpt)#1c.c., wherevp is the
angular frequency of the pump beam,kp(q)5@(vpnp /c)2

2q2#1/2 is the longitudinal component of the wave vector,np
is the refractive index at the pump wavelength,q is the trans-
verse component of the wave vector,x is the position in the
transverse plane, andE0 is the transverse spatial frequenc
field profile. The signal and idler photons are assumed to
monochromatic, withvp5vs1v i , where andvs andv i are
the frequency of the signal and idler photons, respectiv
This is justified by the use of narrow-band interference filt
in front of the detectors.

In the paraxial approximation, the spin and the OAM c
be considered separately@18#. Under these conditions, pho
tons described by a mode function that is a Laguer
Gaussian (up

l ) mode are eigenstates of the OAM opera
with eigenvaluel\ @19#. The indexp is the number of non-
axial radial nodes of the mode and the indexl, referred to as
the topological winding number, describes the helical str
ture of the wave front around a wave front singularity
dislocation. State vectors which are represented by a su
position of LG modes correspond to photons in a superp
tion state, with the weights of the quantum superposit
dictated by the contribution of thel th angular harmonics
When the pump beam is aup0

l 0 mode, under conditions o

collinear phase matching, the two-photon state at the ou
of the nonlinear crystal can be written as a coherent su
position of eigenstates of the OAM operator@20# that are
correlated in OAM, i.e.,l 11 l 25 l 0, wherel 1 and l 2 refer to
the OAM eigenvalues for the signal and idler photons.
photon state described by a LG mode can be written as
©2003 The American Physical Society01-1
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u lp&5E dqup
l ~q!a†~q!u0&, ~1!

where the mode function in the spatial frequency domain
z50 is written as

up
l ~r,w!5S w0

2p!

2p~ u l u1p!! D
1/2S w0rk

A2
D u l u

Lp
u l uS rk

2w0
2

2 D
3expS 2

rk
2w0

2

4 DexpH i l wk1 i S p2
u l u
2 DpJ , ~2!

with rk andwk being the modulus and phase, respectively
the transverse componentsq of the wave vector. The func
tions Lp

l (r) are the associated Laguerre polynomials andw0

is the beamwidth.
The quantum state of the generated two-photon pai

given @21# by

uC&5E dqsdqiF~qs ,qi !as
†~qs!ai

†~qi !u0,0&, ~3!

whereqs,i are the transverse components of the signal
idler wave vectors,u0,0& is the vacuum state, andas

† andai
†

are creation operators for the signal and idler modes. Un
conditions of collinear propagation of the pump, signal a
idler photons, the mode functionF(qs ,qi) can be written as
F(qs ,qi)5E0(qs1qi)W(qs2qi), where normalization of
the state requires*dqsdqi uF(qs ,qi)u251. The functionW,
which comes from the phase-matching condition in the l
gitudinal direction, is given@21# by

W~qs,qi !5A 2L

p2kp

sincS uqs2qi u2L

4kp
DexpS 2 i

uqs2qi u2L

4kp
D ,

~4!

where one makes use of the paraxial approximationkp(q)
;kp2q2/(2kp), with kp5vpnp /c, and correspondingly for
the signal and idler wave vectors. The conditionnp>ns
>ns , wherens,i are the refractive index at the signal an
idler wavelengths, is assumed.

One can decompose the quantum stateuC& in the base of
the eigenstates of the OAM operator, as

uC&5 (
l 1 ,p1

(
l 2 ,p2

Cp1 ,p2

l 1 ,l 2 u l 1 ,p1 ; l 2 ,p2&, ~5!

where (l 1 ,p1) correspond to the signal mode, (l 2 ,p2) corre-
spond to the idler mode, and the amplitudeCp1 ,p2

l 1 ,l 2 is written

as

Cp1 ,p2

l 1 ,l 2 5E dqsdqiF~qs ,qi !@up1

l 1 ~qs!#* @up2

l 2 ~qi !#* . ~6!

The weights of the quantum superposition are given
Pp1 ,p2

l 1 ,l 2 5uCp1 ,p2

l 1 ,l 2 u2, which gives the value of the joint detec

tion probability for finding one photon in the signal mod
( l 1 ,p1) and one photon in the idler mode (l 2 ,p2). The two-
photon state can be also characterized by the ampli
A(x1 ,z1 ,t1 ;x2 ,z2 ,t2)5^0,0uE1

1E2
1uC&, at positions (x1 ,z1)

and (x2 ,z2) and timest1 and t2, where E1(x,z,t) is the
05030
t

f

is

d

er
d

-

y

de

electric-field operator. If one makes use of the paraxial
proximation for the electric-field operator of a photon tra
eling in vacuum@21,22#, the amplitude can be written as

A~x1,z1,t1;x2,z2,t2!5 (
l 1,p1

(
l 2,p2

Cp1,p2

l 1,l 2 up1

l 1 ~x1,z1!up2

l 2 ~x2,z2!

3exp@2 iv~ t11t2!#. ~7!

Such amplitude might be employed, e.g., to draw analog
between the spatial structure of the two-photon quant
states and the properties of the corresponding incohe
classical radiation~see Refs.@11,21#!.

For a given nonlinear crystal and pump beam spatial d
tribution, the amplitudesCp1 ,p2

l 1 ,l 2 depend on the length of th

crystal (L), the pump beam widthwp , and the chosen width
of the LG base (w0). Through the normalization of Eq.~6!,
it turns out that the amplitude can be shown to depend
two normalized parameters: the normalized pump be
width w̄p5wp /AlpL and the normalized beam width of th
LG modes,w̄05w0 /AlpL, wherelp is the wavelength of
the pump beam in vacuum. For a typical value of the pu
wavelengthlp50.4 mm, and a crystal length ofL51 mm,
a pump beam width ofwp;20 mm corresponds to a norma
ized value ofw̄p;1.

In Fig. 1 we plot the contribution to the mode decomp
sition of the quantum stateuC& of all the harmonics with the
same value of the indicesl 1 and l 2, i.e., Pl 1 ,l 2

5(p1 ,p250
` Pp1 ,p2

l 1 ,l 2 , which gives the probability of detecting

FIG. 1. Mode distributionsPl 1 ,l 2
for different values of the pa-

rameterw̄p , which takes into account all the harmonics with th

same indicesl 1 andl 2. ~a! w̄p51, ~b! w̄p52.5, and~c! w̄p55. The
pump beam is a Gaussian mode (l 050), so thatl 11 l 250. Thex
axis represents the value ofl 1.
1-2
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photon with signal model 1 and idler model 2, for any value
of p1 and p2. In all cases the pump beam is a Gauss
mode. The distributionPl 1 ,l 2

depends only on the norma

ized width w̄p . Thus, for a given material, the OAM distri
bution of the stateuC& depends on the ratiowp /AlpL, a
result which gives an important scaling rule. In Fig. 2~a! we

show the dependence ofPl 1 ,l 2
on w̄p for different values of

l 1 andl 2, with l 11 l 250. One observes that the spiral ban

width increases withw̄p , therefore it can be made larger b
increasing the pump beam width or by decreasing the cry
length. Notice that in doing so the coupling efficiency in t
detection state is also modified~see, e.g., Ref.@23#!. Al-
though the total contributionPl 1 ,l 2

of modes with a given

index l 1 and l 2 depends only onw̄p , the actual amplitude

distributionPp1 ,p2

l 1 ,l 2 depends also onw̄0. In Fig. 2~b! we show

the contributions of the modes with different indicesp1 and
p2, i.e., Ppmax

0,0 5(p1 ,p250
pmax Pp1 ,p2

l 1 ,l 2 , as a function ofpmax. We

considerw̄p51 and l 15 l 250, which is representative of
general case. The plot reveals that there is an optimal v

of w̄0 for which the contribution ofP0,0
0,0 is maximum, and

only a few modes with different indexp make significant

contributions to the total weight. Away from the optimalw̄0

value, a large number of modes are required to represen
quantum state.

In most applications that make use of the OAM of t
photons, one projects into a subspace of the complete Hil
space that describes the mode function of the photon~e.g.,
Ref. @17#!. This implies considering only a fraction of th
mode space. Let us consider only modes withp15p250,
and thus thereafter we defineu l 1 ,l 2&[u l 1 ,p150;l 2 ,p250&.
In this subspace, the two-photon state can be written as

FIG. 2. ~a! Value of the weightPl 1 ,l 2
for ( l 1 ,l 2)5(0,0), ~1,21!,

and~2,22!, as a function of the normalized pump beam widthw̄p .
The labels show the value of (l 1 ,l 2). The pump beam is a Gaussia
mode.~b! WeightPpmax

0,0 as a function of the indexpmax for different
values ofw̄0, as shown in the labels. In all casesw̄p51.
05030
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uC&5 (
l 152`

`

(
l 252`

`

C0,0
l 1 ,l 2u l 1 ,l 2&. ~8!

Since the amplitudeC0,0
l 1 ,l 2 depends on both normalized pa

rametersw̄p andw̄0, the expansion given by Eq.~8! depends
on the base of LG modes considered. In general, calcula
of the amplitudesCp1 ,p2

l 1 ,l 2 requires a four-dimensional integra

tion in the spatial frequency domain. However, for a pum
beam with a spatial field profile corresponding to au0

l 0 mode,

we were able to obtain the value of the amplitudeC0,0
l 1 ,l 2 in an

analytic form. Namely,

C0,0
l 1 ,l 25A0GS u l 0u1u l 1u1u l 2u

2
11D tan21

1

i 1w0
2kp/2L

~9!

for l 1l 2>0, and

C0,0
l 1 ,l 25A0 (

n50

min(u l 1u,u l 2u)

~21!n
u l 1u! u l 2u!

~ u l 1u2n!! ~ u l 2u2n!! ~n! !2

3S w0
2

2wp
21w0

2D 2n GS u l 0u1u l 1u1u l 2u22n

2
11D

~11 i ~4L/w0
2kp!!n/2

3G~n!sinS n tan21
1

i 1w0
2kp/2L

D ~10!

for l 1l 2,0. In these expressions,A0 stands for

A05~2 i ! u l 0u2u l 1u2u l 2u~kpwp
2/pL !1/2~wp/w0! u l pu

3S 2w0
2

2wp
21w0

2D (u l 0u1u l 1u1u l 2u)/211
2(u l 0u2u l 1u2u l 2u)/211

Au l 0u! u l 1u! u l 2u!
.

~11!

In both Eqs.~9! and ~10!, the relationl 05 l 11 l 2 holds. It is
worth stressing that Eqs.~9!–~11! provide the analytical ex-
pression of the quantum state under general condition
terms of the pump beam and the crystal properties. Mo
over, this expansion corresponds to performing a Schm
decomposition for continuous variables in this subspace, t
allowing to calculate the entropy of entanglement@24#.

In Fig. 3, we plot the expansion in OAM eigenstates
the two-photon state for pump beams withl 050,1,2 and
w̄p5w̄051. In the three cases represented, the subspac
are considering represents more than 40% of the corresp
ing complete Hilbert space. The spiral bandwidth of the e
pansion in terms of statesu l 1 ,l 2& increases withl 0. Equa-
tions ~9! and ~10! show that, for a given pump beam, th
phase of the amplitudeC0,0

l 1 ,l 2 changes for each mode wit
l 1l 2,0, but it is the same for all modes withl 1l 2>0.

The concept can be extended to the general case
pump beam whose spatial field distribution is a coherent
perposition of LG modes, so thatE0(x)5(mCmu0

m(x), with
m50,2,4, . . . ,M . The LG modesu0

m(x) are the correspond
ing expression in the spatial domain of the LG modes giv
1-3
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by Eq. ~2!. The energy flowI of the pump beam can be
written as@16# I 52e0cnp(muCmu2. If we restrict to the sub-
space spanned by the states of the formu l ,l &, one generates
an entangled two-photon state of the formuC&
;(n50

N gnun,n&. By making use of Eqs.~9! and ~10!, one
obtains that the amplitudesgn of the quantum state generate
when the crystal is pumped by the superposition of L
modes are

gn5
A~2n!!

n!
$2w̄p/@w̄0~2w̄p

211!#%2n12C2n . ~12!

This expression reveals that properly tailoring the spatial f
tures of the beam that pumps the down-converting crys

FIG. 3. Mode decomposition in the subspaceu l 1 ,p150;l 2 ,p2

50& for several pump beams. In~a!, ~c!, and~e! we plot the weight
P0,0

l 1 ,l 2 of the mode distribution, and in~b!, ~d!, and~f! we plot the
phase arg$C0,0

l 1 ,l 2% of each mode.~a,b!: l 050; ~c,d!: l 051 and~e,f!:

l 052. In all cases,w̄p5w̄051. The solid line in~b–d! is plotted to
help the eye.
-
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allows generation of optimal quantum states for differe
quantum information protocols, such as the entanglement
hancement required for obtaining maximally entangled sta
@25#. One approach for the realization of entanglement c
centration is to perform mode filtering operations on the tw
photon state that is generated at the output of the crystal@26#.
In contrast, Eq.~12! shows that the required quantum sta
could be obtained through appropriate engineering of
spatial properties of the pump beam@27#. For instance, Eq.
~12! gives the contributionC2n of each mode that makes th
pump beam, in order to obtain a maximally entangled qu
tum state (gn51, all n). Equation~12! also shows that the
phase of the stateun,n& corresponds to the phase of the co
responding mode of the classical pump beam, arg$C2n%, a
result consistent with the experimental observation by
et al., that the down-converted photons carry informati
about the phase of the pump beam@28#.

In conclusion, we have obtained and analyzed the deta
quantum spatial structure of the two-photon entangled st
generated in parametric down-conversion in terms of
eigenstates of the orbital angular momentum operator.
put forward the related concept of quantum spiral bandwid
and showed its dependence on the pump beam and do
converting crystal. This allows us, e.g., to define an effect
finite Hilbert space where entanglement takes place@29#. En-
gineering such quantum spatial bandwidth should be a
tool to optimize multidimensional quantum informatio
schemes, for example, to increase the resolution of t
photon imaging using entangled photons~e.g., Ref.@30#! and
to enhance the efficiency of relevant multidimensional qu
tum cryptography protocols~e.g., Ref.@31#!.
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